首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10210篇
  免费   716篇
  国内免费   240篇
电工技术   24篇
技术理论   1篇
综合类   213篇
化学工业   5607篇
金属工艺   2456篇
机械仪表   340篇
建筑科学   126篇
矿业工程   44篇
能源动力   141篇
轻工业   184篇
水利工程   9篇
石油天然气   23篇
武器工业   29篇
无线电   297篇
一般工业技术   1418篇
冶金工业   208篇
原子能技术   31篇
自动化技术   15篇
  2024年   13篇
  2023年   189篇
  2022年   176篇
  2021年   320篇
  2020年   333篇
  2019年   289篇
  2018年   310篇
  2017年   261篇
  2016年   243篇
  2015年   256篇
  2014年   514篇
  2013年   613篇
  2012年   619篇
  2011年   826篇
  2010年   711篇
  2009年   600篇
  2008年   643篇
  2007年   669篇
  2006年   728篇
  2005年   575篇
  2004年   521篇
  2003年   343篇
  2002年   229篇
  2001年   179篇
  2000年   162篇
  1999年   186篇
  1998年   169篇
  1997年   116篇
  1996年   79篇
  1995年   54篇
  1994年   50篇
  1993年   42篇
  1992年   31篇
  1991年   31篇
  1990年   24篇
  1989年   23篇
  1988年   14篇
  1987年   7篇
  1986年   9篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
61.
Light induced catalytic processes have attracted significant attention during the last years for wastewater treatment due to their efficiency in decomposition of organic contaminants. In this study we report the synthesis of graphene oxide (GO)/ZnO hybrid layers with high photocatalytic efficiency using laser radiation. The results show that the hybrid layers exhibit much improved photodecomposition efficiency as compared to pure GO or ZnO both under UV and visible-light irradiation. The enhanced photocatalytic efficiency of the hybrid as compared to the reference pure ZnO and GO layers was attributed to the contribution of GO to the separation and transport of the photogenerated charge carriers. Additionally, under visible light irradiation the organic molecules can act as first sensitizers in the degradation process. The recyclability of the layers was also investigated through repetitive photodegradation cycles under UV- or visible-light irradiation. After consecutive degradation runs, the hybrid photocatalyst layers were still stable and retained high degradation efficiency, ensuring reusability. The photocatalytic activity of the layers was correlated with the gradual change of their chemical structure during consecutive degradation cycles. Owing to the high photodegradation efficiency, reusability, and ease of recovery the synthesised hybrid layers consisting of easily available materials are suitable for environmental purification applications.  相似文献   
62.
Tape casting is a suitable process for large-scale production of biodegradable films. This study presents a comparison of three drying procedures of starch–cellulose films: i) conduction drying, ii) infrared drying (42.3?W?m?2, higher infrared heating power damaged the films), and iii) conduction-infrared drying. All the drying procedures were performed at approximately 60°C. Drying times from the second and third methods were close to 1?h, half the time observed for conduction drying. Films from the second and third methods showed similar hygroscopicity (0.15?g.?g?1, RH 43%), tensile strength (31.3?MPa, RH 58%), and glass transition temperature (?12.13°C, RH 43%).  相似文献   
63.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   
64.
Service lifetime and thermal insulation performance are both crucial for the application of thermal barrier coatings (TBCs). In this study, layered structure design under equivalent thermal insulation conception is introduced to lower the cracking driving force in TBCs, and with the goal of prolonging TBCs lifetime. Three groups of layered LZO/YSZ TBCs were designed with same thermal insulation of 500?μm YSZ, the LZO layers were deliberately designed with different initial elastic modulus. Virtual crack closure technique (VCCT) calculation result showed that the energy release rates at the crack tips are 28.2, 22, and 18.8?N/m corresponding to the initial elastic modulus of 70, 60, and 50?GPa. After gradient thermal cyclic tests with surface temperature of 1300?°C, TBCs with lowest initial elastic modulus showed the longest lifetime, and more than double of pure YSZ TBCs. This study provides a new option for the improvement of TBCs lifetime.  相似文献   
65.
Phase equilibria in ZrO2-YO1.5-SiO2 (ZYS) and ZrO2-GdO1.5-SiO2 (ZGS) were experimentally assessed at 1400?°C and 1600?°C as they can offer insight on reactions between thermal barrier coatings (TBCs) based on ZrO2-YO1.5/GdO1.5 and molten silicate deposits in gas turbine engines. Features shared in both systems include the absence of ternary compounds and no ternary solubility in the binary phases. In ZYS however, a quaternary invariant reaction was observed that eliminates the zircon-disilicate equilibrium at higher temperatures. The results suggest no appreciable difference in the reactions between silica and thermal barrier oxides based on ZrO2-YO1.5 or ZrO2-GdO1.5, or environmental barrier coatings based on the corresponding Y/Gd silicates. The phase diagrams derived from these experiments are part of a broader effort to develop thermodynamic databases that can help guide the design of next-generation TBCs.  相似文献   
66.
Thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) usually suffer from molten calcium-magnesium-alumino-silicate (CMAS) attack. In this study, columnar structured YSZ coatings were fabricated by plasma spray physical vapor deposition (PS-PVD). The coatings were CMAS-infiltrated at 1250?°C for short terms (1, 5, 30?min). The wetting and spreading dynamics of CMAS melt on the coating surface was in-situ investigated using a heating microscope. The results indicate that the spreading evolution of CMAS melt can be described in terms of two stages with varied time intervals and spreading velocities. Besides, the PS-PVD columnar coating (~100?μm thick) was fully penetrated by CMAS melt within 1?min. After the CMAS attack for 30?min, the original feathered-YSZ grains (tetragonal phase) in both PS-PVD and EB-PVD coatings were replaced by globular shaped monoclinic ZrO2 grains in the interaction regions.  相似文献   
67.
In the present work, PPy, ZnO, and polypyrrole/zinc oxide (PPy/ZnO) microcomposites (1, 2, and 5 wt%) were prepared and their properties have been tuned for anticorrosion applications on low carbon mild steel. The synthesized products: ZnO, PPy, and composites were characterized by various sophisticated analytical techniques such as XRD, FTIR, Raman, FESEM, EDX, UV–VIS, TGA, and BET. The band frequencies observed at 480 and 588 cm−1 in FTIR spectrum correspond to stretching vibrations of Zn-O and N-H bonds, respectively, broadening of the bands in the composites indicate strong interactions between ZnO and PPy matrix. The potentiodynamic polarization study of PPy and PPy/ZnO composite was carried out in 3.5% NaCl solution to investigate the corrosion resistance efficiency. PPy/1 wt% ZnO (Icorr = 190 nA) composite coating on low carbon mild steel was observed to exhibit best corrosion protection property compared to PPy (121 μA), 2 and 5 wt% ZnO (242, 295 nA) composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48319.  相似文献   
68.
A new kind of high electrical conductive epoxy coating with low filler rate was investigated for lightning strike protection (LSP) of carbon fiber reinforced polymer (CFRP). The coating without CFRP substrate was firstly studied. The influence of silver submicronic wires (AgSWs) with a high aspect ratio on the electrical behavior is observed; that is, the electrical resistivity evolution, the current density value, and the electrical conduction mechanisms as function of temperature. The preponderant electrical conduction mechanism is an Ohmic behavior. The higher level of conductivity obtained is 5.5 × 105 S m−1 for 9% vol of AgSWs. Lightning strike tests were carried out on an epoxy/AgSWs coating filled with 8% in volume (74 gsm) and deposited on a CFRP. The ultrasonic testing after lightning strike on coated CFRP shows no structural delamination and demonstrates the interest of this new route for an efficient LSP. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48700.  相似文献   
69.
Photocathodic protection coatings have been widely applied in various areas such as ship and architectural protection, or chemical industry. In this work, a composite of titanium dioxide loaded with reduced graphene oxide (RGO/TiO2) was prepared and used as filler on waterborne polyacrylate (PA) coating to reinforce the metal protection against corrosion. Compared with the current filler of zinc phosphate used for anticorrosive coating, the photoelectrochemical properties of RGO/TiO2-PA coating exhibit improved photocathodic protection under visible light illumination since RGO/TiO2 composite has significant superiority in enhancing metal protection due to its dispersion, micropore blocking ability, and photoelectrochemical conversion performance. The mechanism of anticorrosion reinforcement of RGO/TiO2-PA coating was hypothesized that graphene provides an extrabarrier layer to obstruct corrosive in dark condition and photocathodic protection under lighting. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48733.  相似文献   
70.
为减少团聚,提高石墨烯在涂层中的分散性,研究采用纳米分散技术预先制备了石墨烯分散液,再将其分散至环氧树脂中获得石墨烯改性复合涂层。通过对石墨烯含量为 0、0.3%、0.6%的复合涂层进行盐水浸泡、盐雾、阴极剥离实验及电化学性能测试,证明石墨烯的加入显著增强了涂层的防护性能。石墨烯复合涂层在 3.5%盐水中浸泡 1 008 h后,涂层低频阻抗仍大于 106 Ω·cm2比未添加石墨烯的涂层提高了 3个数量级,且盐雾实验 6 000 h后涂层表面仍保持完好;含 0.6%石墨烯,的涂层耐蚀行为劣于石墨烯含量为 0.3%的涂层。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号